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Abstract. In this dissertation, we address the problem of gene selection 

from ranked gene lists. We propose a new hybrid feature selection method 

(mAP-KL) that combines successfully multiple hypothesis testing and affinity 

propagation clustering algorithm along with the Krzanowski & Lai cluster qual-

ity index, to select a small yet informative subset of genes. We subject our 

method across a variety of validation tests on simulated microarray data as well 

as on real microarray data. The overall evaluation results suggest that mAP-KL 

generates concise yet biologically relevant and informative n-gene expression 

signatures, which can serve as a valuable discrimination tool for diagnostic and 

prognostic purposes, by identifying potential disease biomarkers in a broad 

range of diseases. Finally, to provide the research community with the capabil-

ity to apply mAP-KL in any given gene expression dataset, we have implement-

ed this methodology to a Bioconductor/R-package accompanied with extra 

functionalities. 
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1 Introduction 

The dawn of DNA microarray technology has improved our potential to comprehend 

the underlying mechanisms of human diseases and to aid in more accurate classifica-

tion, diagnosis, and/or prognosis. Because of its high throughput nature, computation-

al tools are essential in data analysis and mining in order to help biomedical research-

ers to maximize the extracted knowledge from the experimental results. In the area of 

diagnostics, microarray-derived markers are emerging as a valuable tool. Similar to 

any other clinical test, the primary goal of molecular tests, including microarray tests, 

is to provide reliable and timely results for improving patient care. In order to maxim-

ize the usefulness of microarrays in the diagnostic/prognostic arena it is important to 
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minimize the number of biomarkers that need to be tested for an accurate diagnosis to 

be reached.  

The selection of those biomarkers, however, is a challenging process in which fea-

ture selection (FS) methods could make a significant contribution. Indeed, from the 

late 90s a plethora of methods emerged and applied on several microarray studies. 

Despite differences in their fundamental algorithms, they all share the same objec-

tives: 1) to avoid overfitting and improve prediction performance; 2) to make faster 

and cost effective models; and 3) to offer a deeper insight into the underlying pro-

cesses [1]. Nevertheless, selecting those ‘significant’ genes that perform the same 

level of classification in relation to a specific disease is far from feasible at the mo-

ment and still an open issue. 

2 Related work 

In reality, every microarray dataset may result to as many significant gene lists to as 

many FS methods we apply. Even in cases where methods share the same principles 

the produced gene lists are bound to diverge. Speaking of methods that share common 

principles, we may define the following broad groups of FS methods. Filtering, wrap-

per and embedded FS methods are the key categories in the field, each one with the 

respective advantages and disadvantages. In addition to this classification, a new class 

of FS methods, hybrid methods, has emerged. Hybrid methods’ combine methods of 

different categories aiming at taking advantage of their pros while alleviating their 

cons of benefit to the ‘significant’ gene list selection. 

Combining methods is a constructive decision making process based always on 

scientific assumptions, either biological or statistical, rather than on pot luck. For 

instance, Jaeger et al. [2] claimed that ranking algorithms produce lists of genes, 

where the top ranked genes are highly correlated with each other, mainly because they 

belong to the same pathway. Additionally, Hall in his thesis [3] investigated the hy-

pothesis that “A good feature subset is one that contains features highly correlated 

with the class, yet uncorrelated with each other”. Those beliefs were the springboard 

for several hybrid methods, which combined a ranking (filtering) method and a clus-

tering method to conclude to a list of significant genes. 

In particular, Jaeger et al. employed a fuzzy clustering algorithm to prefilter the 

genes by grouping them according to their similarity. Then, with the aid of a statisti-

cal test like t-test or Wilcoxon, selected one or more representative genes from each 

cluster to form a list of ‘significant’ yet uncorrelated genes. In this study, the number 

of clusters to be formed and the number of representative genes remained un-

addressed. Similar to Jaeger et al., Hanczar et al. [4] proposed a two step method 

where an unsupervised clustering method, K-mean, combined with a mathematical 

notion, prototype gene, that tries to identify the representative genes of each cluster. 

Analogous issues to Jaeger et al. appeared in this study, and characterized as objec-

tives for future work by the researchers. An alternative algorithmic approach, where 

ranking of genes precedes any other method is described in the mRMR [5] method. 

Particularly, the initial ranking through t-test or F-test is then combined with a se-



quential iteration between pairs of the ranked genes, to conclude to a subset of ‘signif-

icant’ genes according to some criteria, maximum relevance and minimum redundan-

cy. One considerable drawback of this approach is that the redundancy criterion may 

exclude genes that considered important from a biological point of view. Another 

interesting approach, HykGene [6], proposed a three step gene selection, which incor-

porates a filtering algorithm, a hierarchical clustering on the top-ranked genes and 

finally a sweep-line algorithm that first identifies the clusters from the dendrogram 

and then selects one representative gene per cluster. 

Taking into account the promising classification results of those combined methods 

as well as their intrinsic limitations, we considered a new hybrid method, mAP-KL 

[7]. In the proposed approach, the genes are first ranked according to their differential 

expression using a multiple hypothesis t-test, which controls successfully the Type I 

error. Then the top N ranked genes are held and grouped to clusters with the Affinity 

Propagation (AP) clustering algorithm [8]. Prior to AP a clustering index algorithm 

determines the number of clusters among the top-N-genes. The output of this method 

is a subset of genes, one exemplar per cluster that best describes the phenotypes’ 

characteristics. 

3 Proposed Hybrid Feature Selection method (mAP-KL) 

A FS method, in microarray gene expression data, should be independent of plat-

form, disease and dataset size. Our hypothesis is that among the statistically signifi-

cant ranked genes in a gene list, there should be clusters of genes that share similar 

biological functions related to the investigated disease. Thus, instead of keeping N top 

ranked genes, it would be more appropriate to define and keep a number of gene clus-

ter exemplars. We propose a hybrid FS method (mAP-KL), which combines multiple 

hypothesis testing and AP clustering algorithm along with the Krzanowski & Lai 

cluster quality index [9], to select a small yet informative subset of genes. 

3.1 The Filtering method 

The proposed methodology combines ranking/filtering and cluster analysis to se-

lect a small set of non-redundant but still highly discriminative genes. In relation to 

the filtering step, we first employ the maxT [10] function  to rank the genes of the 

training set and then we reserve the top N genes (N = 200) for further exploitation. 

Our decision on which FS method to employ follows the findings of an analysis that 

we carried on FS methods [11]. Specifically, we assessed the classification perfor-

mance of five different FS methods on data from ten different neuromuscular diseas-

es. Each method yielded a different ranked list of genes, which was then used itera-

tively from top to bottom, in the range of 2 to 400 genes, to compose a new classifica-

tion scheme in each iteration. The evaluation of the classification performance of all 

the produced schemes per FS method is depicted in Figure 1, and shows that the 

maxT achieved an average discrimination accuracy of 95%, between normal and dis-

ease samples. 



 

Fig. 1. The overall classification accuracy of five feature selection methods on ten datasets of 

neuromuscular disease data according to four classification algorithms 

3.2 The Clustering Quality index 

In the sequel, prior to clustering analysis we define the number of clusters, which in 

essence will be the number of representative genes that finally will compose our sub-

set. The decision about which quality index to use, was based first on the indices 

comparison results of the Tibshirani et al. [12] survey as well as on several trials on 

simulated clustering data that also proved the efficiency of the index. Hence, we em-

ployed the index of Krzanowski and Lai to determine the number of clusters solely on 

the disease samples of the training test set.  

This is actually a very fine detail in our methodology, since it has a direct impact 

on the clusters identification and consequently on the selected genes. However, we 

came across a dilemma regarding the part of the data that it would be the most proper 

and advantageous to apply the index. The first option was to search for the clustering 

structure solely in the samples belonging to the normal/control phenotype, whereas 

the second alternative was to investigate the samples in the disease phenotype. We 

finally reckoned that what actually is of interest for the identification of significant 

genes relevant to a disease, is the disease part of the data because all the information 

about the ‘triggered’ molecular processes is definitely present in it. 

3.3 The Affinity Propagation Clustering Algorithm 

The final step of our methodology involves the cluster analysis through the AP 

clustering method. The AP algorithm appeared in the late 20s and according to a 

benchmark analysis [13] across 15 other clustering algorithms, including k-means and 

k-medians clustering, hierarchical agglomerative clustering e.t.c., excelled at finding 

the more accurate clustering solution. Besides its intrinsic belief that initially all data 

points (genes) are considered as potential exemplars and its efficient convergence to 

the final clustering, urged us to adopt AP as an indispensable part of our methodolo-

gy. Thus, we pass into AP the number of k  clusters according to the Krzanowski and 



Lai index and then let AP to detect those n  clusters where ( )n k clusters among 

the top N genes (a pre-defined number). The algorithm converges to the requested 

number of clusters (most of the times) and provides us with a list of the most repre-

sentative genes of each cluster, the so called exemplars. These n  exemplars are ex-

pected to form a classifier that shall discriminate between the normal and disease 

classes in a test set. Finally, we formulate the updated train and test sets by keeping 

only those n  genes, and proceed with the classification process. The general 

flowchart of our methodology appears in Figure 2. 

 

Fig. 2. The mAP-KL methodology flowchart 

3.4 The Implementation of mAP-KL into an R-package 

To provide the research community with the capability to apply mAP-KL in any 

given gene expression dataset, we have implemented this methodology to an open-

source Bioconductor/ R package accompanied with extra functionalities such as data 



sampling preprocessing, classification, network analysis, gene annotation analysis, 

pathway analysis and reporting that collaborate through five built-in classes, Figure 3. 

The centric idea during the package’s design was to build functions that either can 

shape an extensive analysis pipeline or used as standalone modules.  For instance, a 

user may import any dataset of raw gene expression data and apply with a single 

command eight at maximum different preprocessing methods. Then, may analyze any 

of the preprocessed data with the mAP-KL method and conclude to lists of significant 

genes (exemplars). Classification assessment, annotation analysis, pathway analysis 

and network characteristics are some of the possible analyses that a user may apply on 

these exemplars. On the other hand, a user may as well employ any of the available 

functions to exploit a particular functionality for example, to partition a dataset into 

train and validation sets, to obtain annotation info for a given list of probe ids, and so 

on. 

 

Fig. 3. A UML schematic representation of the classes and functions of the mAPKL. 



4 Results and Discussion 

We subjected our method to a series of evaluation tests on simulated microarray data 

in the first part and real microarray data in the second. Regarding the real microarray 

data we employed datasets of six neuromuscular diseases as representatives of small 

cohorts and four cancer datasets with numerous samples per phenotype. We designed 

and executed an elaborate set of analytical experiments with 5-CV on the training set 

and hold-out validation on a separate set using three different classifiers, RF – SVM – 

KNN, to assess its performance across whole genome expression datasets from both 

small and large patient cohorts.  Moreover, on those microarray datasets we also ap-

plied 12 other feature selection/elimination approaches and compared the classifica-

tion results using several metrics, for example AUC, TNR, TPR. In particular, we 

employed six univariate filter methods (eBayes [14], ODP [15], maxT [10], SAM 

[16], SNR and t-test [17]), one multivariate filter algorithm (cat [18]), three dimension 

reduction approaches (BGA-COA [19], PCA [20], PLS-CV [21]), one embedded 

method (Random Forest [22]), and one hybrid method (HykGene [6]).  

Apart from the classification analysis, we investigated the produced gene lists from 

a biological perspective. The power of any FS approach is evident not only from its 

classification performance, but also from the biological relevance to the respective 

pathological phenotypes. Therefore we engaged the produced gene lists from mAP-

KL and the methods that excelled in the classification process, (eBayes, PLS-CV, 

SAM, BGA-COA, RF-MDA), as well as the maxT method which is the ranking 

method of mAP-KL, into a series of validations. During those validations, we tried to 

unravel the ‘semantics’ behind those gene lists and its association with the respective 

diseases. 

4.1 Assessing the Classification Performance on Microarray Data 

The overall results, based on the RF classifier, as summarized in Figure 4 places 

mAP-KL at the top shelve among 12 other FS algorithms developed for the mining of 

gene expression data. In particular, the mAP-KL method achieved the second best 

mean AUC in neuromuscular diseases i.e. 0.91 and the sixth best in cancer data. 

Eventually, the classification performance of mAP-KL across all ten diseases reached 

the AUC score of 0.86, which is the third best AUC score with the minimum standard 

deviation value compared to the methods with better classification performance e.g. 

eBayes, PLS-CV. Hence, we may firmly state that the combination of a univariate and 

a clustering method isolates subsets of genes that may discriminate unknown samples 

from a variety of diseases and number of samples quite accurately. 



 

Fig. 4. The overall classification results (AUC metric) with RF classifier 

4.2 Biological relevance of discriminatory gene lists 

Typically, the initial product of an FS method is a list of ids rather than gene symbols, 

since the expression data stem from microarray chips technology. Therefore, a neces-

sary action that we typically take is to match those probe ids with the relevant gene 

symbols. Another interesting thing from chip technology is that one gene symbol is 

regularly represented by more than one probe ids. Thus, an over or under expressed 

gene may be present in a top ranked list more than one times according to the chip 

specifications. As a result, those multiple instances of a gene shall be removed from 

any top ranked list to conclude to a list of unique top genes. This is an essential step 

regarding the anticipated gene enrichment since a top list of 20 or 50 probe ids may 

for example represent 14 or 35 unique gene symbols. Furthermore, gene chips include 

internal and external spiked in controls responsible for the hybridization quality that 

should be not included in the top ranking of any differential analysis. For all those 

reasons, the ‘degree of uniqueness’ (DoU) of a top ranked list is a first validation 

measure directly connected to the list’s potential from a biological standpoint. 



In the following tables, we have cited the number of probe ids and the respective 

number of gene symbols per method and per dataset. In the last column, we have 

calculated the DoU value as the average of the division between gene symbols and 

probe ids. The closest to the unit the more unique is the ranked list. Regarding the 

neuromuscular data, Table 1, the mAP-KL achieved the highest score with the maxT 

being quite close. In relation to cancer data, Table 2, the eBayes method surpassed the 

other methods although its average quantity is based on three rather than four da-

tasets. The mAP-KL placed second setting a direct inference about the high “unique-

ness” of the produced lists. 

Table 1. The DoU of seven FS methods across neuromuscular data 

FS 
ALS DMD JDM LGMD2A LGMD2B NM 

DoU 
Prbs Gns Prbs Gns Prbs Gns Prbs Gns Prbs Gns Prbs Gns 

mAP-KL 21 20 14 14 21 20 6 6 15 15 18 18 0.984 

maxT 20 20 20 20 20 20 20 20 20 20 20 18 0.983 

RF-MDA 20 20 20 20 20 20 20 19 20 20 20 18 0.975 

SAM 20 14 20 20 20 18 20 16 20 16 20 20 0.867 

eBayes1 

20 17 20 20 20 18 20 16 20 15 - - 0.860 

PLS-CV 20 13 20 20 20 19 20 18 20 16 20 17 0.858 

BGA-COA 20 15 20 17 20 18 20 14 20 17 20 17 0.817 

1 The eBayes method evaluated in five datasets 

Table 2. The DoU of seven FS methods across cancer data 

FS 
Breast Colon Leukemia Prostate 

DoU 
Prbs Gns Prbs Gns Prbs Gns Prbs Gns 

eBayes1 - - 20 18 20 18 20 19 0.917 

mAP-KL 6 4 20 16 5 5 12 12 0.867 

PLS-CV 20 14 20 18 20 19 20 17 0.850 

BGA-COA 20 12 20 18 20 19 20 18 0.838 

SAM 20 11 20 18 20 18 20 19 0.825 

maxT 20 11 20 16 20 17 20 20 0.800 

RF-MDA 20 9 20 14 20 18 20 19 0.750 

1 The eBayes method evaluated in three datasets 

 

A second validation criterion is the enrichment of the unique gene symbols in rela-

tion to the associated pathways. At this point is crucial to refer to another parameter 

before mentioning the results of this validation measure, which are the protein-

coding-genes (P-C-Gns) in the ranked list. In essence, not all of the known genes are 

protein coding and thus involved in molecular functions. Pathway analysis tries to 

simplify the complexity at the cellular level through the representation of a series of 



steps where “each step is an event that transforms input physical entities into output 

entities” [23]. Such entities are definitely the produced proteins, among other small 

molecules or particles, and as a consequence only the protein coding genes are requi-

site for a pathway analysis.  

Through a plethora of pathway analysis tools, we utilized the ‘Reactome’ pathway 

database [23], which is a curated and peer reviewed database of pathways and reac-

tions in human biology. We uploaded the top lists of the selected FS methods for all 

diseases and evaluated their pathway enrichment. During the pathway evaluation, we 

took into consideration the DoU and the number of protein-coding genes parameters 

as well as the number of pathways according to the ‘Reactome’ database. The final 

pathway enrichment (PE) score for each FS (m) is the average of the summation of 

pathways per protein-coding genes multiplied by the DoU for all diseases (d)  

10

1

- -
 .d

m

d d

Protein coding genes
PE DoU

Pathways

   

We summarized the results, Table 3, where the FS methods are in descending order 

based on their average PE score. In accordance with the pathway analysis, the maxT 

method appears to achieve the highest PE score across all diseases. Besides is the 

method with the second highest DoU score marginally behind mAP-KL. However, 

this significant advantage over mAP-KL and RF-MDA that follow is mainly due to 

the weird PE score in prostate cancer (4.33), where the maxT identified three (3) 

pathways with 13 unique genes. Albeit, those three methods appear to constitute a 

group with PE scores close to unit, which is a satisfactory if not intriguing case for 

biologists. 

Table 3. The overall pathway analysis results 

FS 
Pathway Analysis 

ALS DMD JDM LGMD2A LGMD2B NM Breast Colon Leukemia Prostate Mean Stdev 

maxT 1.00 1.08 1.08 0.43 1.36 1.01 0.47 0.80 0.79 4.33 1.24 1.12 

mAP-KL 1.43 0.78 1.38 0.43 0.88 1.40 0.67 0.63 0.80 1.17 0.95 0.36 

RF-
MDA 

0.75 1.10 1.40 0.74 0.63 1.80 0.54 0.63 0.80 1.03 0.94 0.40 

eBayes1 0.37 1.50 0.90 0.64 0.67 - - 1.08 1.26 0.86 0.91 0.36 

PLS-CV 0.37 0.89 1.21 0.66 0.90 0.85 0.98 0.90 1.07 1.04 0.89 0.23 

SAM 0.29 1.13 1.00 0.64 0.80 1.08 0.46 1.15 0.98 1.27 0.88 0.32 

BGA-
COA 

0.68 1.06 0.63 0.70 1.19 0.85 0.60 0.90 1.14 1.00 0.87 0.22 

1 The eBayes method evaluated in eight datasets 

5 Conclusions 

We proposed a hybrid FS method (mAP-KL), which clearly demonstrates how effec-

tive the combination of a multiple hypothesis testing approach with a clustering algo-



rithm can be to select small yet informative subsets of genes in binary classification 

problems. Particularly, across a variety of diseases and datasets, mAP-KL achieved 

competitive classification results compared to other FS methods and specifically to 

HykGene method, which follows a similar philosophy i.e. first ranking and then clus-

tering. The advances of mAP-KL over HykGene or other similar approaches stem 

from three key characteristics; the data-driven nature, the affinity propagation cluster-

ing, and the classifier independence. Indeed, the engagement of a cluster quality in-

dex, the Krzanowski and Lai, diminishes any fuzziness and provides the clustering 

algorithm with a representative number of potential clusters. Moreover, in mAP-KL 

the data determine the size of the subset i.e. the structure of the data dictate the num-

ber of clusters and the clustering algorithm decides on the representatives upon each 

cluster. Contrary to other methods, for example HykGene, where a classifier is 

wrapped around its method, in our case no classifier takes part during the subset con-

struction. This methodological characteristic is of great importance since our subsets 

lack of any overfitting phenomenon pertinent to classifiers. 

Relevant to the identification of clusters, the employment of AP clustering algo-

rithm, deals effectively with the issue of representative genes per cluster. Other com-

parable approaches to mAP-KL admitted considerably difficulties on selecting effec-

tively one or more representative genes per cluster. Besides, the AP follows a gene-

network mechanism by considering initially all genes as nodes in a network. The 

resultant exemplars are the central genes within a cluster of genes and probably the 

key nodes within a network of genes. Therefore mining the exemplars can be consid-

ered as the forefront of a network inference process rather than just the outcome of a 

FS approach. As such, we intent to construct networks based on the top N genes of 

our methodology and then to exploit the network characteristics of the exemplars. An 

initial attempt towards this direction is already available in the mAPKL package, 

though more network inference methods for the reconstruction of gene regulatory 

networks and methods for functional enrichment will be engaged in the near future. 

References 

1. Y. Saeys, I. Inza, and P. Larranaga, "A review of feature selection techniques in 

bioinformatics," Bioinformatics, vol. 23, pp. 2507-17, Oct 1 2007. 

2. J. Jaeger, R. Sengupta, and W. L. Ruzzo, "Improved gene selection for classification of 

microarrays," Pac Symp Biocomput, pp. 53-64, 2003. 

3. M. A. Hall, "Correlation-based feature selection for machine learning," Ph.D. Thesis, 

Computer Science, The University of Waikato, Hamilton, New Zealand, 1999. 

4. B. Hanczar, M. Courtine, A. Benis, C. Hennegar, K. Clement, and J.-D. Zucker, 

"Improving classification of microarray data using prototype-based feature selection," 

ACM SIGKDD Explorations Newsletter, vol. 5, p. 7, December 2003 2003. 

5. C. Ding and H. Peng, "Minimum redundancy feature selection from microarray gene 

expression data," J Bioinform Comput Biol, vol. 3, pp. 185-205, Apr 2005. 

6. Y. Wang, F. S. Makedon, J. C. Ford, and J. Pearlman, "HykGene: a hybrid approach for 

selecting marker genes for phenotype classification using microarray gene expression 

data," Bioinformatics, vol. 21, pp. 1530-7, Apr 15 2005. 



7. A. Sakellariou, D. Sanoudou, and G. Spyrou, "Combining multiple hypothesis testing and 

affinity propagation clustering leads to accurate, robust and sample size independent 

classification on gene expression data," BMC Bioinformatics, vol. 13, p. 270, 2012. 

8. B. J. Frey and D. Dueck, "Clustering by passing messages between data points," Science, 

vol. 315, pp. 972-6, Feb 16 2007. 

9. W. J. Krzanowski and Y. T. Lai, "A criterion for determining the number of groups in a 

data set using sum of squares clustering," Biometrics, vol. 44, pp. 23-34, 1988. 

10. Y. Ge, S. Dudoit, and T. P. Speed, "Resampling-based multiple testing for microarray data 

analysis," Test, vol. 12, pp. 1-77, 2003. 

11. A. Sakellariou, D. Sanoudou, and G. Spyrou, "Investigating the minimum required number 

of genes for the classification of neuromuscular disease microarray data," IEEE Trans Inf 

Technol Biomed, vol. 15, pp. 349-55, May 2011. 

12. R. Tibshirani, G. Walther, and T. Hastie, "Estimating the number of data clusters via the 

gap statistic," Journal of the Royal Statistical Society: Series B, vol. 63, pp. 411-423, 2001. 

13. D. Delbert, "Affinity Propagation: Clustering Data by Passing Messages," Doctor of 

Philosophy, Graduate Department of Electrical & Computer Engineering, University of 

Toronto, 2009. 

14. G. K. Smyth, "Linear models and empirical bayes methods for assessing differential 

expression in microarray experiments," Stat Appl Genet Mol Biol, vol. 3, p. Article3, 2004. 

15. J. D. Storey, "The optimal discovery procedure: a new approach to simultaneous 

significance testing," Journal of the Royal Statistical Society: Series B vol. 69, pp. 347-

368, 2007. 

16. V. G. Tusher, R. Tibshirani, and G. Chu, "Significance analysis of microarrays applied to 

the ionizing radiation response," Proc Natl Acad Sci U S A, vol. 98, pp. 5116-21, Apr 24 

2001. 

17. J. Gould, G. Getz, S. Monti, M. Reich, and J. P. Mesirov, "Comparative gene marker 

selection suite," Bioinformatics, vol. 22, pp. 1924-5, Aug 1 2006. 

18. V. Zuber and K. Strimmer, "Gene ranking and biomarker discovery under correlation," 

Bioinformatics, vol. 25, pp. 2700-7, Oct 15 2009. 

19. A. C. Culhane, G. Perriere, E. C. Considine, T. G. Cotter, and D. G. Higgins, "Between-

group analysis of microarray data," Bioinformatics, vol. 18, pp. 1600-8, Dec 2002. 

20. I. T. Jolliffe, Principal component analysis, 2nd ed. New York: Springer, 2002. 

21. A. L. Boulesteix, "PLS dimension reduction for classification with microarray data," Stat 

Appl Genet Mol Biol, vol. 3, p. Article33, 2004. 

22. L. Breiman, "Random forests," Machine learning, vol. 45, pp. 5-32, 2001. 

23. I. Vastrik, P. D'Eustachio, E. Schmidt, G. Gopinath, D. Croft, B. de Bono, et al., 

"Reactome: a knowledge base of biologic pathways and processes," Genome Biol, vol. 8, 

p. R39, 2007. 

 


